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A B S T R A C T   

In order to investigate the effect of the structural variation of interlayer materials on the photovoltaic properties 
of polymer solar cells (PSCs) in depth, we designed and synthesized three types of small-molecule dyes with a 
structure of 1,10-bis(1-alkyl)-4,40-bipyridine-1,10-diium benzenesulfonate (V-alkyl-OTs). Here, the alkyl groups 
were butyl, hexyl, and dodecyl, which denoted as C4, C6, and C12, respectively. The magnitudes dipole moments 
will be in the order of V–C4-OTs <V–C6-OTs <V–C12-OTs due to the increased the alkyl chain length from C4 
to C12. The work function of the ZnO layer with V-alkyl-OTs is exhibited to depend on the alkyl chain length, 
indicating that a Schottky barrier can be tuned by the size of cation part. Thus, The power conversion efficiencies 
(PCEs) of the PSCs based on the blend of PTB7 and PC71BM as the photoactive layer with V-alkyl-OTs were 
improved over for the device with pristine ZnO (without V-Alkyl-OTs) from 7.6% (short circuit current 
(Jsc) ¼ 16.0 mA/cm2, open circuit voltage (Voc) ¼ 0.72 V, fill factor (FF) ¼ 65.6%) to 8.1% (V–C4-OTs, 
Jsc ¼ 16.8 mA/cm2, Voc ¼ 0.73 V, FF ¼ 65.9%), 8.3% (V–C6-OTs, Jsc ¼ 17.2 mA/cm2, Voc ¼ 0.72 V, FF ¼ 67.3%), 
and 8.6% (V–C12-OTs, Jsc ¼ 18.0 mA/cm2, Voc ¼ 0.72 V, FF ¼ 66.4%). The enhancement of the PCE is strongly 
related to the alkyl chain length, and the major contribution was by the improvement of the Jsc due to the 
reduction in the energy offset at the cathode interface.   

1. Introduction 

Polymer solar cells (PSCs) increase affordability because the PSCs 
can be fabricated by the solution process [1–4]. Previously, the power 
conversion efficiency (PCE) of PSCs has been reached 15% [5,6] by the 
development of efficient photoactive materials [6–17] or through device 
engineering [18–47]. 

For PSC device engineering, the charge collection from the photo
active layer to the electrodes is an important parameter for efficient 
devices. Therefore, adjusting the energy offset at the electrode interface 
is a principal issue to be considered. The zinc oxide (ZnO) layer, which 
has been widely used as the cathode buffer layer (CBL), has been 
modified to optimize the charge collection ability by inserting 
conjugated/non-conjugated polymer electrolytes [18–31], 
small-molecular electrolytes [32–38], or other materials [39–47]. 

For electron collection, we have reported the synthesis and appli
cation of various non-conjugated/conjugated electrolytes for the CBL of 

PSCs. We have also reported on the effects of anion size [18,22] or hy
droxyl group [32] of the organic electrolytes on the photovoltaic prop
erties. In addition, the alkyl chain-length effect of using viologen-based 
polymer dyes as the electron transporting layer was investigated in 
conventional PSCs [18]. The results suggest that longer alkyl chains are 
more effective than shorter chains for the fabrication of efficient PSCs. 
Viologen derivatives are well known as electrochromic dyes [18,22,29, 
48], which show very high electron affinity, high-lying reduction po
tential, and good solubility in water or alcoholic aqueous solvent. Thus, 
viologen derivatives can be applied to the CBL for PSCs. 

Based on our previous studies, as shown in Fig. 1 (a), we designed 
and synthesized three types of small-molecule dyes with a structure of 
1,10-bis(1-alkyl)-4,40-bipyridine-1,10-diium benzenesulfonate (V-alkyl- 
OTs) to investigate the effects of the alkyl chain length on the photo
voltaic properties. The alkyl groups examined butyl, hexyl, and dodecyl, 
denoted as C4, C6, and C12, respectively. The magnitudes of the dipole 
moment of ionic compounds are proportional to the size of the 
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compounds. Thus, the magnitudes of the dipole moments of V-alkyl- 
OTs structures will be in the order of C4 < C6 < C12. A longer alkyl 
chain can induce a larger dipole moment, even when the alkyl group is 
attached to the amino cation, there is a similar correlation between the 
alkyl chain length and the dipole moment [49–52]. Therefore, a larger 
dipole moment of V-alkyl-OTs further will reduce the energy offset at 
the electrode interface, especially between the electron transporting 
layer (ZnO) and the photoactive layer. However, an excessively long 
alkyl chain would reduce the PCE by enhancing the insulating property 
of the layer. Thus, it is important to find out appropriate length of alkyl 
chain in a trade-off relationship between the dipole moment and elec
trical property of materials. Following this basic concept, we selected 
butyl (C4), hexyl (C6), and dodecyl (C12) as the alkyl groups and 
fabricated the PSCs with V-alkyl-OTs as the CBL. As illustrated in Fig. 2 
(b), the devices were fabricated with a configuration of ITO/ZnO/
V-alkyl-OTs/PTB7:PC71BM/MoO3/Ag. The PCEs of the device with 
ZnO/V-alkyl-OTs were improved from 7.6% (short circuit current 
(Jsc) ¼ 16.0 mA/cm2, open circuit voltage (Voc) ¼ 0.72 V, fill factor 
(FF) ¼ 65.6%) with pristine ZnO to 8.1% (C4, Jsc ¼ 16.8 mA/cm2, 
Voc ¼ 0.73 V, FF ¼ 65.9%), 8.3% (C6, Jsc ¼ 17.2 mA/cm2, Voc ¼ 0.72 V, 
FF ¼ 67.3%), and 8.6% (C12, Jsc ¼ 18.0 mA/cm2, Voc ¼ 0.72 V, 
FF ¼ 66.4%). The enhancement of the PCE is strongly related to alkyl 
chain length, contributed mostly by the improvement of the Jsc due to 
the reduction in the energy offset at the cathode interface. 

2. Results and discussions 

2.1. Characterization of V-alkyl-OTs and V-alkyl-OTs coated ZnO 
surface 

As described in the supporting information, V-alkyl-OTs were suc
cessfully synthesized. The chemical structures of the synthesized com
pounds were well characterized by the 1H and 13C NMR spectroscopy 
and elemental analysis. The 1H NMR, 13C NMR, MASS spectra of V- 
alkyl-OTs are showed in Figs. S1 and S2. Thermogravimetric analysis 
(TGA) (Fig. S3) of V-alkyl-OTs was performed with a heating rate of 

10 �C/min under the air atmosphere to investigate thermal stability of 
compounds. The V-alkyl-OTs with C4, C6, and C12 were thermally 
stable (no more than 5% loss in mass) up to 300, 294, and 296 �C, 
respectively. 

To analyze the existence of V-alkyl-OTs on the surface of ZnO, we 
performed X-ray photoelectron spectroscopy (XPS) on the compounds. 
Fig. 2 shows the XPS spectra of ZnO with and without V-alkyl-OTs. 
Signals at 400 and 167 eV correspond to N 1s and S 2p, respectively. 
Peaks at 1044 and 1021 eV in the XPS spectrum of ZnO correspond to Zn 
2p1/2 and 2p3/2, respectively. The peaks in XPS spectra of ZnO with V- 
alkyl-OTs shifted toward higher energy because the Zn atoms become 
more electron-rich than in the ZnO without V-alkyl-OTs. 

The atomic force microscopy (AFM) images were observed of the V- 
alkyl-OTs-treated ZnO layer (Fig. S4). The surface morphology of ZnO 
treated with V-alkyl-OTs was observed to be similar to the pristine ZnO. 
The average surface roughness (Ra) of V-alkyl-OTs with C4, C6, and 
C12 measurements were 1.33, 1.37, and 1.47 nm, respectively. The Ra 
gradually increased with the length of the alkyl chain. The water contact 
angle analysis (Fig. S5) was performed to investigate surface properties. 
Interestingly, the water contact angle of the V-alkyl-OTs coated ZnO 
layer gradually increased with increase in the alkyl chain length, 18.8�

for C4, 21.1� for C6, and 21.6� for C12, which were smaller than the 
angle of pristine for the pristine ZnO surface (28.6�). The Photo
luminescence (PL) spectra (Fig. S6) of ZnO and V-alkyl-OTs treated- 
ZnO were measured to observe the defect coverage of the ZnO surface. 
However, there was no discernible change in the PL spectra of V-alkyl- 
OTs treated-ZnO layer. 

2.2. Photovoltaic properties 

To demonstrate the effect of V-alkyl-OTs on the performance of the 
device, V-alkyl-OTs was used as the CBL in PSCs with the device 
configuration of ITO/V-alkyl-OTs/ZnO/PTB7:PC71BM/MoO3/Ag 
(shown in Fig. 1 (b)). The typical thickness of the V-alkyl-OTs layer was 
~5 nm. Fig. 3 shows current the density-voltage curves of PSCs with the 
V-alkyl-OTs layer as the CBL under illumination. The photovoltaic 

Fig. 1. (a) The chemical structures of V-alkyl-OTs (b) the device structure in this research.  
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parameters are summarized in Table 1. As shown in Fig. 3 and Table 1, a 
noticeable correlation was found between the alkyl chain length of V- 
alkyl-OTs and the PCE of the device. The PCE of the devices with V- 
alkyl-OTs layer was improved with the increase in the alkyl chain 

length. The PCEs exhibited 8.1% (C4, Jsc ¼ 16.8 mA/cm2, Voc ¼ 0.73 V, 
FF ¼ 65.9%), 8.3% (C6, Jsc ¼ 17.2 mA/cm2, Voc ¼ 0.72 V, FF ¼ 67.3%), 
and 8.6% (C12, Jsc ¼ 18.0 mA/cm2, Voc ¼ 0.72 V, FF ¼ 66.4%), which 
are greater than the results for the device with untreated-ZnO layer. 
(PCE ¼ 7.6%, Jsc ¼ 16.0 mA/cm2, Voc ¼ 0.72 V, FF ¼ 65.6%). Thus, a 
significant enhancement of 13.2% was observed in the device with the 
V–C12-OTs layer compared to the device with the untreated ZnO layer. 
The enhancement of Jsc was the main contribution to the PCE 
improvement. 

We performed the Kelvin probe microcopy (KPM) measurements to 
investigate the effect of V-alkyl-OTs on the Jsc. As mentioned before, the 
reduction of the energy offset at the interface is a crucial factor for a high 
Jsc because a large energy offset interrupts the charge collection [17–20, 
23,35]. Fig. 4 shows the energy diagram with the effective work function 
of the ZnO layer with and without V-alkyl-OTs. As shown in Fig. 4 (a), 
the energy offset (ΔE) of the V-alkyl-OTs treated-ZnO surface exhibits 
0.37 (C4), 0.30 (C6), and 0.23 (C12) eV, where the ΔE is defined as the 
difference between the LUMO of PC71BM and the effective work func
tion on the treated-ZnO surface. The values were smaller than that of 
ZnO surface (0.44 eV) and the trend of ΔE is highly correlated to the 
length of the alkyl chain. The calculated Jsc from the IPCE spectra 
(Fig. S7) also corresponded with the Jsc of the PSCs under the 1.5 G 
condition. 

To investigate the effect of V-alkyl-OTs on the electron collection 
capability, the electron-only devices with configurations of ITO/ZnO 
(25 nm) with and without V-alkyl-OTs/PC71BM (60 nm)/Al (100 nm) 
were fabricated and tested (Fig. 5). These devices exhibit a space charge 
limited current (SCLC) behavior above the built-in voltage, which is 
represented by the Mott-Gurney equation [53]. 

J¼
9
8
ε0εrμ

E2

L  

where J is the current density, μ is the charge mobility, E is the electric 
field, ε0εr is the permittivity of the active layer, and L is the thickness of 
the ZnO layer. Using εr  ¼ 3.9 for PC71BM to calculate the electron 
mobility. The electron mobility of the devices with V-alkyl-OTs were 
2.43 � 10� 3 (C4), 2.49 � 10� 3 (C6), 2.89 � 10� 3 (C12) cm2V� 1s� 1, 
which are slightly higher values than the measured electron mobility of 
the ZnO layer without V-alkyl-OTs (2.24 � 10� 3 cm2V� 1s� 1). The trend 
of electron mobility data appeared to be correlated to the alkyl chain 
length of V-alkyl-OTs, but the change in electron mobility with V-alkyl- 
OTs is not significantly different from the value for the pristine ZnO. 
Similar features were found in the series resistance (Rs) data (Table 1). 
The Rs data of the devices with V-alkyl-OTs were almost similar to for 
the device based on pristine ZnO. However, the turn-on voltages of the 
devices with V-alkyl-OTs were 1.02 (C4), 0.91 (C6), and 0.73 V (C12), 
which are smaller than that of the device without V-alkyl-OTs (1.39 V). 
The turn-on voltage [54] is strongly correlated with the electron 
collection capability at the interface. The results agree with the increase 
in the Jsc and the decrease in the energy offset at the interface. 

Electronic impedance spectroscopy (EIS) was performed to investi
gate the carrier transport and recombination mechanism. The EIS 
spectra (Fig. 6) were linearly fitted to estimate the recombination 
resistance (Rrec). The larger EIS semi-circle reflects a greater recombi
nation resistance. The higher Rrec values are related to the extraction of 
the charge at the ZnO interfaces. The Rrec of the devices with V-alkyl- 
OTs were 1360 (C4), 1650 (C6), 1950 (C12) kΩ, which are higher than 
the Rrec of the device with pristine ZnO (1230 kΩ). The results are 
consistent with the PCEs of the device. 

In order to further understand the effect of V-alkyl-OTs on the 
charge transporting and collection properties, we plotted and analyzed 
the photocurrent density (Jph ¼ JL - JD) as a function of the effective 
voltage (Veff ¼V0 - Vapp), where JL is the current density under illumi
nation, JD is the current density under dark conditions, V0 is the voltage 
at which Jph ¼ 0 and Vapp is the applied voltage, respectively. The 

Fig. 2. (a) XPS survey spectra and (b) Zn 2p spectra of ZnO with and without V- 
alkyl-OTs. 

Fig. 3. Current density–voltage curves of PSCs ZnO, ZnO/V-alkyl-OTs under 
illumination (inset: in the dark condition) in this research. 
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voltages (Vsat) at which Jph show the transition to the saturation regime 
were 0.275 V (ZnO), 0.199 V (ZnO/V–C4-OTs), 0.178 V (ZnO/V–C6- 
OTs), and 0.173 V (ZnO/V–C12-OTs) (shown in Fig. 7 (a)). Interest
ingly, the results strongly agree with the trend of the Jsc and the PCEs of 
the devices, because the small Vsat means the low energy barrier in the 
device. Using the carrier-transporting and collecting probability in the 
flat region of the Jph from the ratio of Jph/Jsat can be estimated, where 
the Jsat is the saturated current density and calculated from the 
convergence value of Jph. (Fig. 7 (b)) The carrier transporting and col
lecting probabilities at the Jsc condition were 93.17% (ZnO), 93.61% 
(ZnO/V–C4-OTs), 94.00% (ZnO/V–C6-OTs), 94.21% (ZnO/V–C12- 
OTs), respectively. Finally, the maximum exciton generation rate 
(Gmax ¼ Jph/(q/L)) at the Vsat, in which the q is the elementary charge 

and the L is the thickness of the active layer, was calculated as 
1.141 � 1028 (ZnO), 1.254 � 1028 (ZnO/V–C4-OTs), 1.232 � 1028 

(ZnO/V–C6-OTs), and 1.298 � 1028 (ZnO/V–C12-OTs) m� 3s� 1, 
respectively. No apparent changes were observed in Gmax, because the 
Gmax correlates with the absorbance of the active layer. As mentioned 
before, the tendency of Vsat and the carrier transporting and collecting 
probability agrees with the increase in Jsc and the decrease in the energy 
barrier. This correlation means that the devices with ZnO/V-alkyl-OTs 
exhibited a decreased charge recombination, and an increased charge 
collection capability at the cathode interface along the dipole moment of 
the applied materials. 

3. Conclusion 

A series of small-molecule dyes based on dialkyl viologen with 
different alkyl chain length have been synthesized and demonstrated as 
the CBL layer for PSCs to investigate the structural variation of interlayer 
materials. The PCEs of the device with V-alkyl-OTs as the CBL were 8.1 
(C4), 8.3 (C6), and 8.6% (C12), respectively. These values are better 
than the PCE of the device with pristine ZnO (7.6%) due to the formation 
of the interface dipole at the cathode interface by the thin layer of V- 
alkyl-OTs. Also, we found that the PCEs of the PSCs depend on the alkyl 
chain length of interlayer materials because longer alkyl chain induces a 
larger interface dipole. Similarly, the work function of the ZnO layer 
with V-alkyl-OTs is exhibited to depend on the size of cation part, 
indicating that a Schottky barrier can be tuned by the size of cation part. 
The major significant contribution to the enhancement of the PCE was 
through the improvement of the Jsc due to the reduction of the energy 
offset at the cathode interface. From the results, a longer alkyl chain 
induces a larger interface dipole, and the enhancement of the PCE is 
strongly related to alkyl chain length. 
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Table 1 
The performances of PSCs with ZnO layer showing the best PCE. The averages and deviations (20 devices are averaged) are summarized in parentheses.  

Buffer Layer Jsc (mA/cm2) Voc (V) FF (%) PCE (%) Rs (Ω cm2) aCalculated Jsc (mA/cm2) 

ZnO 16.0 (15.9 � 0.2) 0.72 (0.72 � 0.00) 65.6 (65.4 � 0.35) 7.6 (7.5 � 0.1) 2.9 15.9 
V–C4-OTs treated-ZnO 16.8 (16.8 � 0.1) 0.73 (0.73 � 0.00) 65.9 (65.8 � 0.14) 8.1 (8.1 � 0.1) 2.9 17.0 
V–C6-OTs treated-ZnO 17.2 (17.2 � 0.1) 0.72 (0.72 � 0.00) 67.3 (66.7 � 1.22) 8.3 (8.2 � 0.1) 2.6 17.4 
V–C12-OTs treated-ZnO 18.0 (17.7 � 0.3) 0.72 (0.72 � 0.00) 66.4 (66.0 � 0.64) 8.6 (8.4 � 0.2) 2.2 18.1  

a Calculated from the IPCE spectra. 

Fig. 4. The work function of V-alkyl-OTs treated-ZnO and the energy diagram 
of the device in this research. 

Fig. 5. Current density–voltage curves of electron-only device with a configu
ration of ITO/ZnO (25 nm) with or without V-alkyl-OTs/PC71BM (60 nm)/Al 
(100 nm). (inset: with fitted line, V: applied voltage, Vbi: built-in voltage, Von: 
turn-on voltage). 

Fig. 6. Impedance spectra of the PSCs based on ZnO without and with V- 
alkyl-OTs. 
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