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ABSTRACT: In this study, organic solar cells (OSCs) with a photoactive layer
based on the bulk heterojunction structure of the high-performance polymer
donor PM6 and non-fullerene acceptor BTP-eC9 were developed. Hydrogen
molybdenum bronze (HXMoO3) was introduced as a hole transport layer (HTL)
in lieu of poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS),
a common HTL in OSCs, for energy-level control and enhanced charge transport.
UV photoelectron spectroscopy revealed that the highest occupied molecular
orbital (HOMO) level of HXMoO3 (−5.10 eV) was lower than that of
PEDOT:PSS (−5.00 eV). The VOC of the OSC with HXMoO3 as the HTL (0.818
V) was higher than that of the device with PEDOT:PSS (0.636 V). By the energy-
level alignment with enhanced VOC, the energy conversion efficiency of the device
with HXMoO3 (13.1%) was found to be higher than that of the device with
PEDOT:PSS (8.4%). Ag nanowires (NWs) were added to the HTLs to improve
their conductivity, and enhancements in electrical properties owing to increased
intercontact due to the high conductivity of the NWs and their molecular rearrangement with HXMoO3 were determined. The
increases in the short-circuit current density, fill factor, and open-circuit voltage of the fabricated PM6:BTP-eC9 device contributed
to its outstanding properties, as demonstrated by its enhanced power conversion efficiency of 14.0%. The secondary binding and
alignment of HXMoO3 and Ag NWs were determined by X-ray photoelectron spectroscopy and field-emission scanning electron
microscopy, and the structure of the OSC was shown to improve carrier transport and interfacial contact. This work can provide a
solution to address the low energy conversion efficiency of current OSCs and develop various applications.

KEYWORDS: organic solar cells, solution process, hole transport layer, metal nanowires, energy-level modification, conductivity,
semi-transparent solar cells

1. INTRODUCTION

Organic electronic devices are widely applied in various fields
owing to their advantages of low cost, solution processability,
and flexibility. Organic light-emitting diodes (OLEDs) and
organic solar cells (OSCs), in particular, have attracted great
research attention. These devices are composed of a multilayer
structure with a photoactive layer and buffer layer between the
metal electrodes. While OLEDs convert electrical energy into
light energy, OSCs convert light energy into electrical energy.
The active layers used for organic semiconductors differ from
those used for inorganic semiconductors in that they exhibit a
diversity of bandgaps based on their molecular structure. This
feature enables the modification of the device structure to
obtain high performance.1−7 Recent studies on the control of
visible-light absorption in organic semiconductor materials and
research on transparent electrodes have led to the active
investigation of transparent OSCs.8−11

OSCs have a bulk heterojunction (BHJ) structure consisting
of an electron donor and acceptor. The active layer of this
structure absorbs sunlight to form excitons which migrate to

either side of the electrode through charge dissociation,
extraction, and transport and exhibit photovoltaic character-
istics. Many researchers have investigated the design and
synthesis of electron donors and acceptors for OSCs. For
instance, Jianhui and Yingping et al. reported an increase in
power conversion efficiency (PCE) of over 15% when
poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-
benzo[1,2-b:4,5-b′]dithiophene))-alt-(5,5-(1′,3′-di-2-thienyl-
5′,7′-bis(2-ethylhexyl)benzo[1′,2′-c:4′,5′-c′]dithiophene-4,8-
dione)] (PM6) was used as the donor and 2,2′-((2Z,2″Z)-
((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]-
thiadiazolo[3,4-e]thieno[2,″3:″4′,5′]thieno[2′,3′:4,5]pyrrolo-
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[3,2-g]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis-
(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-in-
dene-2,1-diylidene))dimalononitrile (Y6, Egopt = 1.81 eV) was
used as the acceptor.12,13

The energy level is a critical factor for maximizing the
efficiency of photovoltaic devices, such as OSCs, because it is
closely related to parameters that determine performance, such
as interfacial alignment, absorption, and electrical properties.
An electrode and active layer may be sufficient for the basic
operation of OSCs, but the barrier formed by the considerable
energy-level gap between the electrode and active layer may
interfere with charge transport. The barrier problem can be
solved by introducing a buffer layer with a suitable energy level
between the electrode and active layer. This buffer layer can
also improve interfacial contact by forming a fine morphology
between these components.14−21

The PCE of OSCs can be enhanced in several ways, such as
(1) adopting suitable donors and acceptors as photovoltaic
active materials, (2) introducing additives into the active layer
to arrange ordered crystallinity,22,23 and (3) controlling the
alignment of interlayer energy levels using buffer layers [e.g.,
hole transport layer (HTL), electron transport layer (ETL),
and so forth] with varying energy levels within the device.
Numerous studies on this topic have been conducted following
the development of Y6.24,25 The formation of new energy
levels can be promoted by inducing structural changes to
donors and acceptors, such as by introducing various
functional groups to their molecular structures.26,27 In general,
the energy level can be reduced by introducing an atom or a
molecule with high electronegativity.28 ETLs and HTLs, such
as ZnO and poly(3,4-ethylenedioxythiophene)-polystyrene
sulfonate (PEDOT:PSS), respectively, can be used as buffer
layers for OSCs.
The presence of PEDOT:PSS in the buffer layer may

enhance the efficiency of an OSC because the electrical
properties and surface characteristics of this material can be
controlled to achieve high conductivity, wetting property, and
processibility.29 However, the acidic properties of PEDOT may
reduce device stability by eroding the electrode and, eventually,
the active layer over time.30 The hygroscopic properties of
water/alcohol-based PEDOT:PSS, which absorbs moisture
from the air, may also reduce the long-term stability of the
device. Several studies have been performed by different
research teams to overcome these limitations. For instance, the
acidity of PEDOT:PSS could be reduced by post-treatment or
the addition of different solvents.31,32 Such studies demon-
strate that the acidity of the buffer layer may be effectively
reduced to improve device stability; however, the correspond-
ing decline in conductivity usually leads to decreases in
efficiency as a serious side effect.33,34 Moreover, despite its
suitability for solution processing, PEDOT:PSS has lower
efficiency compared with conventional MoO3-deposited
devices, which greatly limits its applications.
Differences in the energy level of recently reported active

layer materials with low HOMO levels could lead to decreases
in efficiency. Thus, a strategy to match the energy levels of
active layer materials with deep energy levels, such as energy-
level tuning, is necessary. Several scholars have performed
studies on the integration of various materials with
PEDOT:PSS.26,35−40

Research on the preparation of buffer bi-layers, introduction
of a metal complex layer, or creation of a hybrid buffer layer
through the direct introduction of other materials has been

actively conducted. The most commonly introduced metal
complexes are those containing a transition metal, such as Mo,
V, W, or Ni.41−48 Studies on the introduction of metal
nanowires (NWs) to compensate for the inherently low short-
circuit current density (JSC) observed during solution
processing in comparison with that obtained during deposition
processing have also been reported. The excellent conductivity
of metal NWs promotes the interaction between the
photoactive layer and electrode to achieve improved charge
transfer and interfacial contact.49,50

In the present study, molybdenum hydrogen bronze
(HXMoO3) HTLs were synthesized to achieve energy-level
tuning in OSCs. Ag NWs were then integrated with the HTLs
to obtain hybrid HTLs that could enhance the current density
of these devices. The active layers of the OSCs consisted of a
BHJ-structured PM6:BTP-eC9 binary D/A-type system. The
properties of the obtained devices were then evaluated after
their preparation.

2. EXPERIMENTAL SECTION
2.1. Materials. ITO glass (sheet resistance, 10 Ω) was purchased

from AMG (Korea). Zinc acetate dehydrate, 2-methoxymethanol,
chlorobenzene (CB), Mo powder, isopropyl alcohol (IPA, HPLC
grade), and hydrogen peroxide (H2O2, 30%) were purchased from
Sigma-Aldrich (USA). PM6 and (2,2′-[[12,13-bis(2-butyloctyl)-
12,13-dihydro-3,9-dinonylbisthieno[2,″3:″4′,5′] thieno[2′,3′:4,5]-
pyrrolo[3,2-e:2′,3′-g][2,1,3]benzothiadiazole-2,10-diyl] bis[met-
hylidyne(5,6-chloro-3-oxo-1H-indene-2,1(3H)-diylidene)]] bis-
[propanedinitrile]) (BTP-eC9) were purchased from Derthon
(China). 1,8-Diiodooctane (DIO) was purchased from Alfa-Aesar
(USA). PEDOT:PSS (Clevios HTL Solar) was purchased from
Heraeus (Germany). Ag NWs were purchased from SG Flexio
(Korea). The top Ag electrode was prepared using Ag granules
purchased from iTASCO (Korea).

2.2. Preparation of the HTL Solutions. Reference HTL 1 was
formed by mixing PEDOTPSS and IPA in 1:1 volume ratio. Mo
powder was added to 10 mL of IPA to obtain a 10 mg mL−1 solution
and magnetically stirred at room temperature to prepare reference
HTL 2. After 10 min, 0.35 mL of H2O2 was added to the Mo solution,
and magnetic stirring was continued for over 40 h. As the reaction
proceeded, the color of the solution changed from gray to yellow,
green, and blue.51 The hybrid HTLs 1, 2 were formed by mixing each
reference HTL 1, 2 with Ag NWs in 95:5 volume ratio.

2.3. Device Fabrication. Prior to the experiments, the ITO glass
was sequentially ultrasonicated with acetone, detergent, IPA, and
deionized water. The glass was then annealed and cleaned using a
UV/O3 cleaner. An ETL was formed on the ITO glass after cleaning.
Briefly, ZnO sol−gel was prepared from a mixture of zinc acetate, 2-
methoxyethanol, and ethanol amine and then spin-coated under
ambient conditions to induce thin-film formation. The ETL was
formed by thermal annealing on a hot plate at 150 °C for 1 h. The
photoactive layer was produced using PM6 as the donor and BTP-
eC9 as the acceptor at a mass ratio of 1:1.2 in a solution of CB (1,8-
DIO, 0.5 vol%). The prepared solution was spin-coated in a glove box,
and the photoactive layer was formed through thermal annealing.
Next, solutions of PEDOT:PSS and HXMoO3 were spin-coated under
ambient conditions, and the HTLs were formed by drying. The top
Ag electrode was formed by thermal deposition (thickness, 100 nm)
using a vacuum evaporator under a pressure of 1 × 10−6 torr and a
deposition rate of 2.5 Å s−1.

2.4. Device Characterization. The energy conversion efficiency
and characteristics of the OSCs produced in this study were assessed
using a Keithley 2400 source measure unit. A solar simulator (Oriel,
1000 W) was used as the light source, and the intensity of incident
light was set based on a reference silicon solar cell measured under
AM 1.5 G and 100 mW cm−2, as suggested by the National
Renewable Energy Laboratory. The external quantum efficiency of the
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fabricated OSCs was measured using a Polaronix K3100 IPCE
measurement system (Mac Science), which allowed for the measure-
ment of the incident PCE. UV photoelectron spectroscopy (UPS) and
X-ray photoelectron spectroscopy (XPS) were performed using a
Micro X-Ray/UV photoelectron spectroscope with a He I light source
(21.2 eV) developed by the Korea Basic Science Institute. Atomic
force microscopy (AFM) and electric force microscopy (EFM) were
conducted using a PSIA XE-100 instrument. A high-resolution field-
emission scanning electron microscope (SU8010, Hitachi) was used
for surface and cross-sectional field-emission scanning electron
microscopy (FESEM) and energy-dispersive X-ray spectroscopy
(EDS). Contact angles (CAs) were measured using a CA analyzer
(DSA100, KRUSS). The 3C beamline of the Pohang Accelerator
Laboratory was used for grazing-incident wide-angle X-ray scattering

(GIWAXS) studies. The GIWAXS sample was fabricated such that
the active layer, HTLs, was formed on silicon wafers by the spin-
coating method. The materials’ solutions are the same as the
experiment.

3. RESULTS AND DISCUSSION

3.1. Properties of the Photoactive Layer and HTLs.
Figure 1 shows images of (a) PM6 as the polymer donor in the
photoactive layer, (b) BTP-eC9 as the non-fullerene acceptor,
(c) PEDOT:PSS as the HTL, (d) molecular structure of
HXMoO3, (e) images of the prepared HTL solutions, and (f)
structure of the fabricated OSCs.

Figure 1. Molecular structures of (a) PM6, (b) BTP-eC9, (c) PEDOT:PSS, and (d) HXMoO3. (e) Images of the HTL solutions. (f) Structure of
the fabricated device bearing HTLs.

Figure 2. UPS characteristics of the HTLs. (a) cut-off energy, (b) on-set energy, and (c) calculated energy-level alignment of the HTLs. EFM
amplitude images of (d) reference HTL 1, (e) hybrid HTL 1, (f) reference HTL 2, and (g) hybrid HTL 2

ACS Applied Energy Materials www.acsaem.org Article

https://doi.org/10.1021/acsaem.2c00960
ACS Appl. Energy Mater. XXXX, XXX, XXX−XXX

C

https://pubs.acs.org/doi/10.1021/acsaem.2c00960?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.2c00960?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.2c00960?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.2c00960?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.2c00960?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.2c00960?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.2c00960?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.2c00960?fig=fig2&ref=pdf
www.acsaem.org?ref=pdf
https://doi.org/10.1021/acsaem.2c00960?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


3.2. Energy Level and Electrical Characteristics. Figure
2 and Table 1 show the UPS data for the HTLs prepared in
this study and the energy levels of the materials estimated from
the UPS analysis, respectively. Based on the UPS results, the
Ecut‑off values (Figure 2a) of reference HTL 1 (PEDOT:PSS),
hybrid HTL 1 (PEDOT:PSS + Ag NWs), reference HTL 2
(HXMoO3), and hybrid HTL 2 (HXMoO3 + Ag NWs) were
16.32, 16.31, 16.27, and 16.14 eV, respectively. Among the
HTLs prepared, hybrid HTL 2 showed the lowest Eon‑set,
followed by reference HTL 1, hybrid HTL 1, and reference
HTL 2 (Figure 2b). Thus, the HOMO energy level (−21.2 eV
+ Ecut‑off − Eon‑set) of hybrid HTL 2 was the deepest, followed
by those of reference HTL 2, hybrid HTL 1, and reference
HTL 1 (Figure 2c).52,53 When compared with those of the
other HTLs, the energy-level variations in the HTL integrated
with Ag NWs decreased. Thus, an energy level that was well-
matched to that of PM6 (EHOMO = −5.54 eV) was created, and
the energy barrier formed between the active layer and
electrode was effectively ameliorated to achieve a high VOC.

47

Figure 2d−g presents the EFM amplitude data of the
prepared HTLs. The measured amplitudes of reference HTL 1,
hybrid HTL 1, reference HTL 2, and hybrid HTL 2 were
487.498, 487.310, 477.319, and 477.900 mV, respectively.
Compared with that of PEDOT:PSS, the surface potential of
HXMoO3 was lower. The surface potential of the photoactive
layer used in this study was 489.900 mV (Figure S1). A high
built-in potential could promote the formation of a more
suitable electric field on HXMoO3 to enhance its energy level

and carrier-transport properties.16 This finding agrees with the
UPS results.54,55

3.3. Atomic Signal and Molecular Arrangement
Analysis. Figures 3a−c and S2 present the surface XPS data
for the prepared HTLs. The measured C 1s signals and S 2p
signals are shown in Figure S2a,2b, respectively. The S 2p
signals of reference HTL 1 and hybrid HTL 1 (Figure S2b)
indicate that decreases in JSC lead to increases in the PSS
peak.47,56,57 The O 1s signals of PEDOT:PSS and HXMoO3
(Figure 3a) indicated the presence of organic CO and C−O
at 532.1 eV and the metal oxide at 531.0 eV. When Ag NWs
were integrated with the HTLs, the binding energies of
PEDOT:PSS and HXMoO3 blue-shifted by 0.1 and 0.2 eV,
respectively, and the peaks showed a low intensity. This result
was attributed to the interaction of the HTLs with the NWs.
The Mo 3d spectrum of the PEDOT:PSS film shown in

Figure 3b revealed the weak signals of sulfate at 228.5 and
232.3 eV. The MoO3 peak of the HXMoO3 film was detected at
232.7 ∼ 9 and 235.7 ∼ 9 eV. The addition of Ag NWs led to a
0.2 eV red shift in the binding energies, and the peaks showed
a low intensity. This result was attributed to the reduction of
Mo due to interactions with the added NWs.
The Ag 3d spectra in Figure 3c revealed the peaks of metal

Ag at 368.6 and 374.7 eV for the hybrid HTL 1 film and 368.5
and 374.6 eV for the hybrid HTL 2 film. Moreover, the
binding energies of the latter shifted by 0.1 eV with a low
intensity when compared with those of the former. This
finding may be attributed to the oxidation of Ag due to

Table 1. Energy-Level Data of the HTLs from UPS Analysis

hole transport layer ECut‑off (eV) EOn‑set (eV) HOMO level (eV)

1. Reference HTL 1 (PEDOT:PSS) 16.32 0.12 −5.00
2. Hybrid HTL 1 (PEDOT:PSS + Ag NWs) 16.31 0.13 −5.02
3. Reference HTL 2 (HXMoO3) 16.27 0.17 −5.10
4. Hybrid HTL 2 (HXMoO3 + Ag NWs) 16.14 0.10 −5.13

Figure 3. Surface XPS characteristics of the HTLs: (a) O 1s, (b) Mo 3d, and (c) Ag 3d signals. Cross-sectional FE-SEM and EDS mappings of (d)
reference HTL 1, (e) hybrid HTL 1, (f) reference HTL 2, and (g) hybrid HTL 2
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interactions between the NWs and HXMoO3. The XPS analysis
also indicated the occurrence of secondary binding between
HXMoO3 and the Ag NWs.

Figure 3d−g presents the cross-sectional FE-SEM and EDS
mapping data for the devices prepared with reference HTL 1,
hybrid HTL 1, reference HTL 2, and hybrid HTL 2. EDS

Figure 4. (a) J−V and (b) external quantum efficiency (EQE) characteristics of fabricated devices bearing HTLs based on the photoactive layer
PM6:BTP-eC9.

Table 2. Photovoltaic Performance of Fabricated Devices Bearing HTLs Based on PM6:BTP-eC9 after Optimizationa

photoactive layer hole transport layer JSC (mA cm−2) VOC (V) FF (%) PCE (%)

PM6:BTP-eC9 1. HTL X (None) 17.8 0.07 29.3 0.3
2. Reference HTL 1 (PEDOT:PSS) 24.4 0.636 54.0 8.4
3. Hybrid HTL 1 (PEDOT:PSS + Ag NWs) 24.0 0.636 53.5 8.2
4. Reference HTL 2 (HXMoO3) 22.9 0.818 70.2 13.1
5. Hybrid HTL 2 (HXMoO3 + Ag NWs) 24.1 0.818 71.0 14.0

aDevices were fabricated with an inverted structure (ITO/ZnO/photoactive layer/HTLs/Ag, active area = 0.04 cm2).

Figure 5. Surface morphological characteristics of (a) reference HTL 1, (b) hybrid HTL 1, (c) reference HTL 2, and (d) hybrid HTL 2 and SEM
data of (e) reference HTL 1, (f) hybrid HTL 1, (g) reference HTL 2, and (h) hybrid HTL 2. Surface contact angles of (i) reference HTL 1, (j)
hybrid HTL 1, (k) reference HTL 2, and (l) hybrid HTL 2.
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analysis of the O 1s, Mo 3d, and Ag 3d signals was performed
to identify the molecular orientations of PEDOT:PSS,
HXMoO3, and Ag NWs, respectively. The reference HTL 1
and hybrid HTL 1 film showed lower distributions of the O 1s
signal compared with the reference HTL 2 and hybrid HTL 2
films. This finding confirms that the O 1s signal decreases after
the introduction of Ag NWs to these films. The hybrid HTL 2
film showed higher distributions of the Mo 3d signal at the
upper part of the active layer and lower part of the HTL
compared with the reference HTL 2 film. The hybrid HTL 2
film showed higher distributions of the Ag 3d signal at the
upper part of the HTL and lower part of the Ag electrode
compared with the hybrid HTL 1 film. Although the cross-
sectional FE-SEM results did not clearly define the binding
mode and structure of the hybrid HTL 1 film, the structure of
the hybrid HTL 2 film, wherein the Ag NWs and HXMoO3
occupied the upper and lower parts, respectively, of the HTL,
can be seen. This finding indicates that the energy-level
alignment effect of HXMoO3 is exerted on the upper part of the
active layer, and increased conductivity and interfacial contact
due to the Ag NWs occur at the lower part of the Ag
electrode.58

3.4. Photovoltaic Properties of the Fabricated OSCs.
The photovoltaic performance of the developed devices is
presented in Figure 4 and Table 2. The device with
PEDOT:PSS as the reference HTL 1 showed a PCE of 8.4%
(JSC = 24.4 mA cm−2, VOC = 0.636 V, FF = 54.0%). The PCE
of the device with hybrid HTL 1 decreased to 8.2% (JSC = 24.0
mA cm−2, VOC = 0.636 V, FF = 53.5%), which could be
attributed to decreases in its JSC and FF. The device with

reference HTL 2 showed a PCE of 13.1% (JSC = 22.9 mA
cm−2, VOC = 0.818 V, FF = 70.2%). The decrease in JSC but
substantial increases in VOC and FF of this device contributed
to its high PCE. This finding agrees with the UPS results of the
HTL, which indicated the formation of a well-matched energy
level between HXMoO3 and the photoactive layer. The PCE of
the device with hybrid HTL 2 was 14.0% (JSC = 24.1 mA cm−2,
VOC = 0.818 V, FF = 71.0%).

3.5. Nano-Structural and Surface Morphological
Characteristics. The AFM results are presented in Figures
5a−d and S3. Figure S3 shows the root mean square (RMS)
roughness (0.969 nm) of the photoactive layer (PM6:BTP-
eC9) used in this study. The reference HTL 1 film in Figure 5a
showed an RMS roughness of 1.353 nm. By comparison, the
hybrid HTL 1 film in Figure 5b showed an RMS roughness of
1.414 nm, which indicated a change in the surface morphology
of the film following the introduction of the Ag NWs. The
RMS roughness of the reference HTL 2 film in Figure 5c, at
14.77 nm, was higher than that of the reference HTL 1 film
owing to the larger domain-size characteristics of metal oxides.
This increase in surface roughness may lead to the lower JSC
(24.0 mA cm−2) of the hybrid HTL 1 film compared with that
of the reference HTL 1 film. The RMS roughness of the hybrid
HTL 2 film in Figure 5d decreased to 12.54 nm following the
introduction of the Ag NWs. This finding indicates an
improvement in surface morphology, which could decrease
carrier recombination and enhance the JSC (24.1 mA cm−2) of
the film.
Figure 5e−h presents the surface FE-SEM results of the

HTL materials. In Figure 5e, the reference HTL 1 film showed

Figure 6. GIWAXS characteristics of (a) reference HTL 1, (b) hybrid HTL 1, (c) reference HTL 2, and (d) hybrid HTL 2. Line-cut profiles of the
HTL materials in the (e) in-plane and (f) out-of-plane directions.
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smooth surface characteristics in line with the AFM results.
The FE-SEM image of the hybrid HTL 1 film in Figure 5f
indicated the presence of surface Ag NWs, but binding
between the NWs and PEDOT:PSS was not observed. The
FE-SEM image of the reference HTL 2 film in Figure 5g
showed the formation of a large domain of metal oxides, in
contrast to the surface of the reference HTL 1 film. In Figure
5h, the hybrid HTL 2 film showed surface Ag NWs similar to
those found in the hybrid HTL 1 film; binding between
HXMoO3 and the Ag NWs was also observed.59 Moreover, the
surface of the sample was smoother compared with that
obtained before the introduction of the NWs. This result
coincides with the XPS and cross-sectional FE-SEM results and
could be attributed to the interaction between HXMoO3 and
Ag NWs, which leads to increases in JSC and FF.
The surface CA analysis results are presented in Figure 5i−l.

As shown in Figure 5i, the reference HTL 1 film had CAs of
33.4° (water) and 33.1° (diiodomethane), with a surface
energy of 61.90 mN m−1. The CAs of the hybrid HTL 1 film in
Figure 5j were 34.3° (water) and 32.1° (diiodomethane), with
a surface energy of 61.39 mN m−1. These results reveal the
formation of a more hydrophobic surface following the
introduction of the Ag NWs. The surface of the reference
HTL 2 film in Figure 5k was more hydrophobic than that of
the reference HTL 1 film. Specifically, the CAs of the reference
HTL 2 film were 38.0° (water) and 31.1° (diiodomethane),
with a surface energy of 59.47 mN m−1. The hybrid HTL 2
film, shown in Figure 5l, revealed the most hydrophobic
surface among the HTL films following the introduction of the
Ag NWs; this film showed CAs of 41.8° (water) and 28.8°
(diiodomethane), with a surface energy of 57.58 mN m−1. This
finding coincides with the XPS and cross-sectional FE-SEM
results. The enhanced interfacial contact and increased phase
separation of this film were due to the binding and alignment
of HXMoO3 and Ag NWs in the lower and upper parts,
respectively, of the film.47,60

The results of GIWAXS are presented in Figure 6a−f. In the
case of the reference HTL 1 film (Figure 6a), a (100) peak was
detected at 0.3 Å−1 in the in-plane direction, a broad
amorphous peak was detected at 1.28−1.5 Å−1, and a (010)
peak with characteristic π−π stacking was detected at 1.0−1.5
Å−1 in the out-of-plane direction.61 The intensity of the (010)
peak of the hybrid HTL 1 film in Figure 6b was stronger than
that of the reference HTL 1 film, indicating an increase in the
face-on structure.19,47,62,63 The intensity of the (010) peak of
the reference HTL 2 film (Figure 6c) in the out-of-plane
direction was stronger than that of the reference HTL 1 film,
which could be attributed to the ordered stacking of the
HXMoO3 structures, as shown in Figure 1d. The characteristics
of the reference HTL 2 film introduced with Ag NWs are
shown in Figure 6d. The strong intensity of the (010) peak of
the hybrid HTL 1 film in Figure 6b confirmed that the face-on
structure increased. The GIWAXS results indicate that
enhancements in the JSC of hybrid HTL 2 are due to
improvements in its π−π stacking.64

A semi-transparent OSC device was fabricated, and its
photovoltaic performance was measured. The results are
presented in Figure S4 and Table S1. The performance of
the device with PEDOT:PSS as the reference HTL 1 was 7.8%
(JSC = 19.5 mA cm−2, VOC = 0.676 V, FF = 69.0%). By
comparison, the performance of the device with hybrid HTL 1
was 7.2% (JSC = 19.1 mA cm−2, VOC = 0.636 V, FF = 69.3%).
While the FF of this device increased, the decrease in its JSC led

to a decrease in its efficiency. The semi-transparent device with
HXMoO3 as the reference HTL 2 showed a remarkable
increase in PCE and energy conversion efficiency of 9.9% (JSC
= 19.5 mA cm−2, VOC = 0.818 V, FF = 61.8%) compared with
the reference HTL 1 device. The addition of Ag NWs further
increased the efficiency of the device to 10.2% (JSC = 20.1 mA
cm−2, VOC = 0.818 V, FF = 61.8%); thus, the energy
conversion efficiency of this device is higher than that of the
device consisting solely of HXMoO3. The reference HTL 1 and
reference HTL 2 devices similarly showed improvements in
transmittance from 15.8 to 16.1% and from 15.1 to 15.7%,
respectively, following the addition of the Ag NWs. This
finding may be attributed to improvements in face-on
characteristics, as illustrated in the GIWAXS results.
The histogram of the PCE values of the devices and box plot

of PCE are presented in Figure S5. Each OSC was fabricated
more than 20 devices.

4. CONCLUSIONS

In this study, HXMoO3 and Ag NWs were introduced as HTLs
in lieu of PEDOT:PSS to OSCs based on BHJ-structured
PM6/BTP-eC9 as a photoactive layer.
A recent trend in OSC research is the development of

devices bearing photoactive layers with deep HOMO levels.
However, the use of PEDOT:PSS, the conventional solution-
processing HTL, could lead to drastic reductions in VOC due to
energy-level mismatches.
UPS analysis showed that the HOMO level of HXMoO3 was

approximately −5.13 to −5.10 eV, which is lower than that of
PEDOT:PSS (−5.02 to −5.00 eV). This finding indicates that
the energy barrier, which could cause reductions in VOC, may
be ameliorated by the formation of a more suitable energy level
with PM6/BTP-eC9, which features a deep HOMO level. XPS
and FE-SEM confirmed the secondary binding and alignment
of HXMoO3 and Ag NWs, and the resulting structure enhanced
carrier transport and interfacial contact.
The OSC produced with HXMoO3 as the HTL demon-

strated a higher VOC of 0.818 V compared with the device
using PEDOT:PSS as the HTL (0.636 V), as well as an
increase in energy conversion efficiency from 8.4 to 13.1%.
Characterization of the OSC device hybridized with Ag NWs
and HXMoO3 as the HTL also showed improvements in JSC
from 22.9 to 24.1 mA cm−2, which confirmed its increased
energy conversion efficiency.
The results collectively suggested that the development of a

semi-transparent OSC device could lead to an enhanced
energy conversion efficiency of 10.2% and an average visible
transmittance (λ = 380−780 nm) of 15.7%. The potential
applications of integrated OSCs may be verified in future
studies on solution-processed HTLs for high-performance
semi-transparent and flexible OSC modules.
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