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ABSTRACT: A novel small-molecule electrolyte, 1,1′-bis(4-hydroxypropyl)-
[4,4′-bipyridine]-1,1′-diium bromide (V-OH), containing a mixture of
PTB7:PC71BM has been designed and synthesized as a cathode buffer layer
for inverted polymer solar cells (iPSCs). The molecular structure of this new
compound comprises a viologen skeleton with hydroxyl group terminals.
While the viologen unit is responsible for generating a favorable interface
dipole, the two terminal hydroxyl groups of V-OH may generate a synergy
effect in the magnitude of the interface dipole. Consequently, the devices
containing the V-OH interlayer exhibited a power conversion efficiency (PCE)
of 9.13% (short circuit current = 17.13 mA/cm2, open circuit voltage = 0.75 V,
fill factor = 71.1%). The PCE of the devices with V-OH exhibited better long-
term stability compared to that of the devices without V-OH. Thus, we found
that it is possible to enhance the efficiency of PSCs by a simple approach
without the need for complicated methods of device fabrication.
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■ INTRODUCTION

Flexible polymer solar cells (PSCs) have attracted much
attention due to their potential applications as clean energy
sources and the possibility of their large-area fabrication.1−4

There has been a rapid improvement in the power conversion
efficiencies (PCEs) of PSCs. 10% or more of PCE has been
reported, and such a value has been achieved because of
tremendous advancements being made in the development of
efficient conjugated materials, including polymers and
oligomers,5−8 and electrode interface engineering.9 Charge
collection at the electrode interfaces is considered the most
crucial factor responsible for creating efficient devices.
Interlayers made of alcohol/water-soluble conjugated polymer
electrolytes (CPEs),10−19 nonconjugated polymers,20−25 alco-
hol/water-soluble conjugated26−30 or nonconjugated small
molecules,31−35 and polar solvent treatments36−40 have been
used to attempt to improve the PCEs of the devices. When a
thin film of these materials is present as an interlayer in the
cathode interface, it dramatically improves the performance of
the PSC. It has been reported that ionic end groups in side
chains on the conjugated polymer backbone induce favorable
interface dipoles, which in turn cause a reduction of the cathode
work function.29,30 Nonconjugated polymers or small mole-
cules31−40 can reduce the work function of the cathode owing

to the formation of a favorable interface dipole. When
compared to polymeric materials, small molecules have several
advantages, such as a high degree of purity and ease of
synthesis. In addition, small molecules do not have batch-to-
batch variations or broad molecular weight distributions.
In this research, a nonconjugated small-molecule organic

electrolyte, 1,1′-bis(4-hydroxypropyl)-[4,4′-bipyridine]-1,1′-
diium bromide (V-OH), was synthesized based on viologen
derivatives. The molecular structure also consists of two
terminal polar hydroxyl groups, as shown in Scheme 1.
Viologen derivatives are used as the materials for electro-
chromic devices. These have high electron affinity, low lying
reduction potential, and are highly soluble in polar protic
solvents such as water and alcohol. Thus, viologen derivatives
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Scheme 1. Synthesis and Chemical Structure of V-OH
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enable the fabrication of multilayer devices via orthogonal
solubility in the processing solvents. In addition, the thin layer
of V-OH used in this study was found to generate favorable
interface dipoles on the quaternary ammonium bromide of the
viologen unit, which is widely used as a cathode interlayer
material.19−21 In addition, it was found that the magnitude of
the interface dipole could be increased by the presence of two
terminal hydroxyl groups of V-OH. To investigate the effect of
the V-OH as a cathode buffer layer on the properties of PSCs,
inverted-type PSCs (iPSCs) with a device structure of ITO/
ZnO/V-OH/PTB7:PC71BM(1:1.5)/MoO3/Ag (shown in Fig-
ure 1a) have been fabricated. The presence of thin V-OH layer
between the ZnO layer and the active layer in the device
improves the PCE from 7.41 to 9.13%, resulting in a relative
enhancement of 23.2%. Although the open circuit voltage (Voc)
of the device with V-OH was similar to that of the reference
device, the short circuit current (Jsc) and fill factor (FF) were
much higher than the reference device. Significantly, enhance-
ment in the PCE of the device without V-OH is thought to
occur mainly due to the increase in the Jsc. In addition, the thin
layer of V-OH facilitates charge collection from the active layer

to the ZnO layer due to its favorable interface dipole, which
indicates the formation of an Ohmic contact.

■ RESULTS AND DISCUSSION

iPSCs with or without V-OH have been fabricated to
investigate the effect of V-OH on the efficiency of PSCs. The
current density vs voltage relationship and the photovoltaic
parameters of the iPSCs with the structure of ITO/ZnO/with
or without V-OH/PTB7:PC71BM/MoO3/Ag are shown in
Figure 1c and Table 1. It has been reported that there is a
positive effect on the performance of conventional PSCs
following polar solvent treatment at the cathode interface.31−35

To remove any possible synergistic effect due to the interlayer
processing solvent (methanol), the ZnO layer in the device was
treated with methanol. The Jsc of the methanol-treated device
slightly increased from 14.48 to 14.65 mA/cm2, while the Voc
remained almost identical, as shown in Figure 2. This indicates
that methanol does not significantly affect the performance of
the iPSCs in this study; however, methanol reduces defects on
the ZnO surface. The Jsc of the devices with V-OH is 17.13
mA/cm2, which is a dramatic improvement over the device
without the V-OH layer (14.65 mA/cm2). The FF of the

Figure 1. (a) Device structures in the research and chemical structure of PTB7 and PC71BM. (b) Energy level diagram of electrodes PTB7 and
PC71BM. (c) Current density−voltage curves of iPSCs under illumination (inset: in the dark condition).

Table 1. Performances of iPSCs Showing the Best PCEa

buffer layer Jsc (mA/cm
2) Voc (V) FF (%) PCE (%) Rs (Ω cm2) Rsh (kΩ cm2)

ZnO/MeOH 14.65 (14.25 ± 0.40) 0.76 (0.75 ± 0.005) 66.6 (66.2 ± 0.45) 7.41 (7.29 ± 0.11) 5.9 0.37
ZnO/V-OH 17.13 (16.81 ± 0.18) 0.75 (0.75 ± 0.004) 71.1 (70.9 ± 0.66) 9.13 (8.96 ± 0.11) 3.4 0.31

aThe averages and deviations (20 for ZnO/MeOH and 30 devices for ZnO/V-OH are averaged, respectively) are summarized in parentheses. Series
(Rs) and shunt resistance (Rsh) are estimated from the device having the best PCE.
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devices containing V-OH also increased from 66.6 to 71.1%.
The device with V-OH as the buffer layer showed the highest
PCE of 9.13%, indicating that the V-OH layer induces a
favorable interface dipole between the ZnO layer and the active
layer. The enhancement of the PCE of the device with V-OH
mainly results from enhancement of the Jsc. The work function
of ZnO with V-OH from the Kelvin probe microcopy (KPM)
measurements is 3.98 eV, which is smaller than that of
methanol-treated ZnO (4.4 eV) and indicates the formation of
a favorable interface dipole. We performed the ultraviolet
photoelectron spectroscopy (UPS) experiments (see Figure
S1) to cross check the interface dipole formation at the surface
of the ZnO layer. The work function of ZnO/V-OH is 3.61 eV,
which is smaller than that of methanol-treated ZnO (4.31 eV).
According to the UPS results, the reduction of ZnO work
function by introducing the thin layer of V-OH has been

confirmed. It is crucial that the Ohmic contact at the interface
has a high Jsc, and subsequently, the Jsc value is strongly
associated with the change in the work function. Herein, the Jsc
improvement indicates the formation of an Ohmic contact.
Interestingly, the Voc of the device with V-OH is almost same as
that of the reference device. Even though the interlayer
modifies the surface potential of the ZnO layer, it hardly affects
the Voc of the device. Similar features have been reported in the
literature.34,35 However, the shunt resistance (Rsh) of the device
with V-OH is slightly smaller than that of the reference device.
Thus, the device with V-OH has estimated smaller series
resistance (Rs) and larger FF values.
The effect of V-OH on electron collection and transport

property was investigated by the space charge limited current
(SCLC) study of the electron-only device with the structure of
ITO/ZnO with or without V-OH/PC71BM/Al. The energy
level diagram under flat band condition is shown as an inset in
Figure 3. The energy gap between the LUMO level of PC71BM
and the work function of ZnO (cathode) layer and the HOMO
level of PC71BM and the Al (anode) layer were 0.44 and 2.01
eV, respectively. Thus, the major carriers in the device were
found to be electrons under forward bias. The energy gap
between the PC71BM layer and the ZnO layer is reduced from
0.47 to 0.02 eV. Thus, the turn-on voltage of the device with V-
OH was 0.4 V, which is considerably smaller than that of the
device without V-OH (1.7 V).41−43 Above the built-in voltage
(inset of Figure 3), the current density and V−Vbi (voltage−
built in voltage) exhibit SCLC characteristics. This is expressed
by the Mott−Gurney law:44

ε ε μ=J
V
L

9
8 0 r

2

3

where J is the current density, μ is the charge mobility, V is the
voltage, ε0εr is the permittivity of the PC71BM layer, and L is

Figure 2. Current density−voltage relationship and photovoltaic
performances of the device based on ZnO and MeOH-treated ZnO.

Figure 3. Current density as a function of voltage curves of the electron-only device with a fitted line (V, applied voltage; Vbi, built-in voltage).
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the thickness of the PC71BM layer. The current density vs
voltage relationship of the device agrees well with Mott−
Gurney Law (εr = 3.9).45 The electron mobility of the device
with V-OH was found to be 1.82 × 10−7 m2 V−1 s−1, which is
lower than that of the device without V-OH (3.17 × 10−7 m2

V−1 s−1). Interestingly, V-OH hardly affects the electron
mobility of the device. Significantly, the magnitude of current
density above the built-in voltage of the device with V-OH is
higher than that of the device without V-OH, implying that the
contact resistance at the cathode is decreased by the V-OH
layer.
Surface morphology and wetting property of the devices

were determined using AFM and water contact angle
measurements, respectively. The surface roughness of the
ZnO surface with V-OH (Figure 4b) is comparable to that of

the surface without V-OH (Figure 4a), the former being 1.61
nm and the latter being 1.44 nm. The presence of the V-OH
layer made the ZnO surface more hydrophilic compared to the
bare ZnO surface due to the intrinsic property of the material.19

The incident photon-to-current efficiency (IPCE) curves
(Figure 5) showed very good correlation with the Jsc data of
the devices under 1.0 sun simulated illumination. The devices
were then placed in a glovebox filled with N2 gas without

passivation. After 125 days, the device with and without V-OH
maintained 88 and 79%, respectively, of its initial PCE. The
PCE of iPSC with V-OH showed a better stability.

■ CONCLUSION
A new alcohol/water-soluble small molecular electrolyte
viologen derivative with two polar hydroxyl groups at the end
of the molecule V-OH was successfully synthesized. The
presence of the V-OH layer leads to a high Jsc in solar cells. This
is due to the formation of a favorable interface dipole. As a
result, the PCE of the devices with V-OH as the cathode
interlayer showed the highest PCE of 9.13% (Jsc = 17.13 mA/
cm2, Voc = 0.75 V, FF = 71.1%). This research provides an
approach to fabricate efficient PSCs without complicated deign
and synthesis of compounds.
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